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Abstract
We demonstrate an efficient and accurate first-principles method to calculate the electronic
structure of a large system using a divide-and-conquer strategy based on localized quasi-atomic
minimal basis set orbitals recently developed. Tight-binding Hamiltonian and overlap matrices
of a large system can be constructed by extracting the matrix elements for a given pair of atoms
from first-principles calculations of smaller systems that represent the local bonding
environment of the particular atom pair. The approach is successfully applied to the studies of
electronic structure in graphene nanoribbons. This provides a promising way to do the
electronic simulation for large systems directly from first principles.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

First-principles methods based on density functional theory
(DFT) [1] and plane-wave basis [2, 3] have been well
developed over the past four decades and very successful in
calculating the electronic structure and total energy of many
systems. Nevertheless, due to the complexity of the algorithms
and the fact that a large number of basis functions is required
in the calculation, many complex structures and materials that
require a computational unit cell containing thousands of atoms
are still beyond the reach of first-principles plane-wave-based
DFT methods.

On the other hand, considerable work has been done in
trying to use localized orbitals as basis [4–10] in order to
reduce the dimension of the Hamiltonian matrix, so that a
large number of atoms can be handled in the calculation. It
has also been shown that O(N) scaling in the first-principles
calculations (i.e. the computational workload scales linearly
with the number of atoms in the calculation) can be achieved
by using a set of well-localized orbitals as basis [4–8, 10].
However, the efficiency and accuracy of the calculations in
this approach strongly depend on the choice of basis orbitals.

In many cases, accurate calculations would require a basis set
consisting of a large number of localized orbitals which slow
down the calculations considerably [10]. Thus it is highly
desirable to have a set of localized minimal basis orbitals
that can faithfully reproduce the converged occupied electronic
structure.

Recently two independent approaches, i.e. the maxi-
mally localized Wanier functions approach by Marzari and
Vanderbilt [11] and the quasi-atomic minimal basis set orbitals
(QUAMBOs) approach by Lu et al [12–14], demonstrated that
highly localized minimal basis set orbitals can be constructed
through unitary transformations of the wavefunctions obtained
from fully self-consistent first-principles calculations with a
large basis set. These minimal basis set orbitals are atomic-
like but deform according to the bonding environment, and can
span exactly the same preserved electronic subspace as the full-
basis first-principles calculations. These minimal basis sets
would serve as a promising platform for developing an efficient
yet accurate method for large scale electronic calculations.

In this paper, we show that accurate tight-binding
Hamiltonians and overlap matrix elements can be calculated by
first-principles methods through the QUAMBO representation
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of electronic structure at different local bonding environments.
By sampling various local bonding environments of a large
complex system from a series of first-principles calculations
of smaller systems, the ‘exact’ environment-dependent tight-
binding matrix of the large system can be assembled directly
from a first-principles approach without resorting to the usual
fitting procedure to generate tight-binding parameters.

2. Method

The method to project the QUAMBOs from the full-basis first-
principles wavefunctions has been described in detail in our
previous publications [12–14]. Starting with the wavefunction
obtained from the full-basis first-principles calculations, the
key steps in the QUAMBOs construction are (1) select all
the occupied states or any set of states of interest to be
preserved; (2) construct a small subset of virtual orbitals that
are maximally coherent with the occupied states from the entire
unoccupied subspace. This small subset of unoccupied orbitals
represents the anti-bonding states which are not necessarily the
lowest energy unoccupied states but rather linear combinations
of the states in the entire virtual space that capture most of
the anti-bonding orbital character. The number of selected
virtual orbitals is equal to the difference between the number of
minimal basis orbitals and the number of preserved occupied
orbitals in the system; (3) combine the preserved occupied
orbitals with the selected small subset of virtual orbitals to form
the QUAMBO subspace. These localized quasi-atomic orbitals
provide an accurate local minimal basis set from which tight-
binding Hamiltonians and overlap matrices can be evaluated.

In our scheme for large scale electronic calculation, an
overlap or tight-binding Hamiltonian matrix of a large system
is built by filling in a set of n × m ‘exact’ sub-matrices
of all pairs of atoms in the system, where n and m are
the numbers of minimal basis orbitals for the two atoms in
the pair, respectively. These n × m ‘exact’ sub-matrices
are calculated from first principles following the QUAMBO
procedure described above. Note that the QUAMBOs, and
hence the n × m sub-matrices of tight-binding, are dependent
on the environment around the pair of atoms, and in principle
the n × m ‘exact’ sub-matrices have to be calculated for
every pair of atoms in the system. This can be done by
first performing first-principles calculations for a relatively
small system which keeps the dominant local environment
of the pair of atoms in the large system; then the n × m
tight-binding matrix for this pair of atoms can be constructed
following the QUAMBO scheme. This approach will break
the first-principles calculations of a large system into many
much smaller subsystem calculations. In many cases of interest
(e.g. defects in crystals), the bonding environment of many
different atom pairs in the large system are essentially the
same. Therefore, in practice first-principles calculations are
needed only for a limited number of smaller systems and
an accurate tight-binding overlap and Hamiltonian matrices
for the large system can be constructed. The scheme was
illustrated with a study of the electronic structure of graphene
nanoribbons.
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Figure 1. (a) Na = 7 A-GNR was chosen to be the training sample
for perfect A-GNR. The dotted rectangle indicates the primitive unit
cell. The left arrow gives the periodic direction. Atoms a, b and c are
treated to be three different atoms according to their local
environment. (b) Additional training sample for studies on A-GNRs
with edge defects.

3. Results

We first applied our scheme to calculate the electronic
structure of perfect armchair-graphene nanoribbons (A-GNRs)
of different widths, where three different types of atoms in the
nanoribbons have been identified as shown in figure 1(a): atom
a represents a carbon atom inside the ribbon, atom b represents
a carbon atom at the edge and atom c is a hydrogen atom for
passivation. The number of minimal basis orbitals for a carbon
atom is 4 (one s and three p) and that for a hydrogen atom
is 1. Only one training cell of Na = 7 A-GNR as shown in
figure 1(a) and a single first-principles calculation is needed to
extract all the necessary ‘exact’ 4 × 4 or 4 × 1 tight-binding
matrices for each pair of a–a, a–b, b–b and b–c atoms from
these three types of non-equivalent atoms, respectively. We
notice that the same type of atom pair by our definition (i.e. a–
a, a–b, b–b and b–c) can appear more than once at different
locations in the same training cell (or in different training
cells) and, strictly speaking, their bonding environments are
not exactly the same. But we found the tight-binding hopping
elements of the same type of pairs are different only on the
order of several meV, while the overlapping elements are
almost the same. Therefore, we assign the matrix elements
to each type of atom pair in the system by taking an algebraic
average over the same type of pairs in the training cells. All
the occupied states and some π∗ antibonding states up to
4 eV above the Fermi level are preserved in the QUAMBO
construction. Figure 2 shows the band structures for A-
GNRs with width Na = 7 and 13 (solid lines) from the
QUAMBO tight-binding scheme using small 4 × 4 and 4 × 1
tight-binding matrices generated from the Na = 7 training
cell as described above. The results from full first-principles
calculations (circles) were also shown for comparison. One can
see that the QUAMBO-TB band structures agree very well with
the full first-principles results in the targeted energy window.
One may observe some additional DFT bands between 3 and
4 eV above the Fermi level. These bands are dominated
by higher angular momentum characters, so they are not
covered by the tight-binding results with minimal basis (s, p).
(However, one can always include more orbitals in QUAMBO
construction to capture these relatively higher-energy bands if
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Figure 2. Band structures based on the QUAMBO-TB scheme (solid
line) compared with DFT results (circle) for A-GNR with Na = 7
and 13.

Figure 3. TB bandgap (solid lines) of A-GNR with different size
compared with DFT results (symbols).

desired.) The electronic bandgap variation of a perfect A-GNR
as a function of the width of the nanoribbon has also been
studied. Figure 3 shows the oscillation of the bandgap with
a period of Na = 3 obtained from our QUAMBO-TB scheme,
which agrees very well with the results from first-principles
calculations [16]. The efficiency of the QUAMBO-TB scheme
enables us to calculate the electronic structure of much wider
graphene nanoribbons, as one can also see from figure 3, where
the bandgap of nanoribbons up to 100 Å in width has been
calculated with our QUAMBO-TB method.

The QUAMBO-TB scheme also enables us to study the
electronic structure of graphene nanoribbons with random
defects. For the purpose of illustration, we have studied the
electronic structures of Na = 6 A-GNR with random edge
defects on one edge of the ribbon at different concentrations.
We first constructed a supercell of Na = 6 A-GNR by
repeating the primitive unit cell 100 times (containing 1200
carbon atoms). The edge defects were generated by randomly
removing pairs of carbon atoms on one side as shown in
figure 4(a). The new structures were passivated with hydrogen
atoms. For this defect system, some additional QUAMBO-TB

(a)

(b)

Figure 4. (a) Schematic view of a part of a supercell of Na = 6
A-GNR containing more than one thousand atoms with edge defects
randomly distributed on one side. Small arrows indicate the edge
defects. (b) Bandgap behavior of the defected Na = 6 A-GNR with
increasing edge defect ratio. The perfect Na = 6(5) A-GNR
corresponds to a defect ratio of 0% (100%). Crosses are the results
from supercells (containing 100 primitive unit cells of perfect
A-GNR) with random edge defects. Squares (circles) are TB (DFT)
results from smaller supercells (containing 10 primitive unit cells of
perfect A-GNR) with regular edge defects by removing pairs of
carbon atoms successively on one side.

matrix elements around the edge defects are needed. We used
another training cell as shown in figure 1(b) to obtain these
additional matrix elements, where the curved arrows indicate
the new matrix elements between these sites to be added to
the existing QUAMBO-TB matrix elements’ database from
the Na = 7 training cell as discussed above. Based upon
this set of QUAMBO-TB matrix elements from first-principles
calculations performed on two small unit cells as shown in
figure 1, actual tight-binding overlap and Hamiltonian matrices
for the defected graphene nanoribbons at various defect
concentrations can be constructed and the electronic structure
of A-GNRs with random edge defects can be studied. The
results of the bandgap as a function of defect ratio in the Na =
6 A-GNR are shown in figure 4(b). The random distribution
of the edge defects gives some variation of the bandgap at
each defect concentration: however, there exists a general
trend of the bandgap with increasing defect concentration.
The bandgap reaches its minimum (which is quite small) at
a defect ratio of 70%. This implies that edge defects have
a significant effect on the electronic structures of A-GNRs,
which is consistent with observations from experiments [17].
In order to verify the accuracy of our QUAMBO-TB approach
for studying the A-GNR with edge defects, we compared the
QUAMBO-TB and DFT results of bandgaps as a function of
the edge defect ratio for an Na = 6 A-GNR with the edge
defects regularly arranged in a much smaller supercell (so
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Figure 5. (a) The training sample for Z-GNRs. (b) TB bandgap (solid lines) of Z-GNR with different sizes compared to DFT results
(symbols).

that DFT calculations can be easily performed). The lattice
vector along the ribbon direction is only 10 times that of the
primitive unit cell of an Na = 6 A-GNR. The edge defects were
constructed by removing pairs of carbon atoms successively on
one side of the ribbon so that all the edge defects stay together
in the supercell. The results are also shown in figure 4(b) where
the open squares represent the results from our QUAMBO-
TB and the open circles represent the results from full-basis
DFT calculations. The results from the TB and the DFT agree
with each other very well, indicating that the QUAMBO-TB
approach we used in this study should be accurate for studying
graphene nanoribbons with defects. It is also interesting to note
from figure 4(b) that randomly distributed edge defects tend to
have smaller bandgaps as compared to the case of regularly
distributed defects at the same defect ratio.

Furthermore, the QUAMBO-TB scheme may also be
applied to studies with spin polarization, where two sets of TB
parameters (for spin-up and spin-down) are needed [14]. For a
demonstration, we applied it to zigzag-graphene nanoribbons
(Z-GNRs) which have a ground state with a spin configuration
of FM-A, i.e. the coupling of spins is of ferromagnetic type
at each edge and of antiferromagnetic type between the two
edges [15, 16, 18]. Five different types of atoms in the
nanoribbons have been identified as illustrated in figure 5(a),
where atom a (b) represents a carbon atom inside the ribbon
with spin-down (up) majority, atom c (d) represents a carbon
atom at the edges with spin-up (down) majority and atom
e is a hydrogen atom for passivation. Only one training
sample of Nz = 5 Z-GNR as shown in figure 5(a) and
a single first-principles calculation with local spin density
approximation are needed to extract all the spin-up and spin-
down tight-binding matrices for these five types of non-
equivalent atoms. Figure 5(b) shows the bandgap behavior of
Z-GNRs with width up to 100 Å. Lines are QUAMBO-TB
results, which are consistent with DFT calculations indicated
by circles [16]. It is very straightforward and advantageous
to use our method to study the electronic structures of
doped graphene nanoribbons [18] or graphene with adatom
adsorption [19, 20].

4. Discussion

The success of our QUAMBO-based tight-binding divide-and-
conquer approach relies on several fundamental physical con-

cepts: local environmental dominance of physical proper-
ties [21], good localization and environmental adaptedness of
the minimal basis set orbitals (QUAMBOs). The first local-
ity property in materials is the physical foundation upon which
the order-N methods may be developed [21]. For example, in
Yang’s density-based divide-and-conquer approach, the phys-
ical system may be divided into a few subsystems [22]. Also
the charge density of each subsystem can be calculated sep-
arately. In our approach, the locality property ensures that a
small training cell which keeps the local environment of cer-
tain atom pairs in large systems may be constructed. However,
the exact size of the training cell depends on the specific sys-
tems. The training cell is expected to be relatively large for
metallic systems.

The good localization and environmental adaptedness
of QUAMBOs make the derived tight-binding parameters
short-ranged as well as exact. Namely, the converged
electronic structure with respect to the basis set may be exactly
downfolded into a short-ranged tight-binding representation,
which is pioneered by Andersen in his muffin-tin orbitals
approach [23]. Therefore only smaller numbers of atom pairs
and training cells need to be considered. In the case of perfect
A-GNRs, one training cell actually contains all the necessary
tight-binding parameters.

Our scheme does not explicitly include the atomic
relaxation. However, the lattice distortion effect is readily
taken care of by the proper choice of training cells. The
current scheme is mainly focused on the electronic structure
calculation of large systems. The total energy and its
derivatives cannot be obtained. Hence the total energy
calculations and molecular dynamics may not be handled.
However, the scheme may be further developed following the
way of traditional tight-binding potential development.

5. Conclusion

We have demonstrated an efficient and accurate method for
calculating the electronic structure of a large system using a
divide-and-conquer strategy. First-principles calculations are
needed only for small numbers of atoms around the pairs, yet
an accurate QUAMBO-TB matrix can be constructed for the
whole system. Such an approach has proved quite successful
for studies of the electronic structure in graphene nanoribbons.

4



J. Phys.: Condens. Matter 21 (2009) 235501 Y X Yao et al

This ‘QUAMBO-on-demand’ approach opens a promising
avenue to do electronic structure simulations and total energy
calculations for large systems directly from first principles.
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